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Uncertainty plays a critical role in reinforcement learning and
decision making. However, exactly how it influences behavior
remains unclear. Multiarmed-bandit tasks offer an ideal test bed,
since computational tools such as approximate Kalman filters
can closely characterize the interplay between trial-by-trial val-
ues, uncertainty, learning, and choice. To gain additional insight
into learning and choice processes, we obtained data from sub-
jects’ overt allocation of gaze. The estimated value and estimation
uncertainty of options influenced what subjects looked at before
choosing; these same quantities also influenced choice, as addi-
tionally did fixation itself. A momentary measure of uncertainty in
the form of absolute prediction errors determined how long par-
ticipants looked at the obtained outcomes. These findings affirm
the importance of uncertainty in multiple facets of behavior and
help delineate its effects on decision making.

reinforcement learning | decision making | uncertainty | visual fixation |
exploration–exploitation

We often need to decide between alternative courses of
action about whose outcome we are uncertain. Common

examples include choosing a dish in a restaurant, a holiday trip,
or a financial investment. Uncertainty, which derives from initial
ignorance and sometimes ongoing change, has two characteris-
tic statistical and computational facets. One is straightforward: If
we try an option, then the amount of learning—i.e., the extent
to which we should update our beliefs—depends on our cur-
rent uncertainty relative to the noise in the observation (1). The
greater our uncertainty, the greater the impact an observation
inconsistent with our current beliefs should have on our subse-
quent beliefs. There is good evidence that humans and other
animals adapt their rate of learning to various factors in the
environment which increase, or reduce, uncertainty (2–6).

The second facet concerns choice. Here, it is the options that
we are uncertain about and that we need to learn about through
sampling. This is more complicated, as our ignorance about their
beneficial or malign consequences implies that we need to take
a sampling risk. This is the notorious exploration/exploitation
dilemma. Although there are elegant computational solutions
for important special cases (Gittins indices; ref. 7), a general
solution is intractable. There is evidence that when choosing
options, people explore in a directed manner, by integrating val-
ues with uncertainty about these values (8–12), particularly when
these are carefully dissociated (9, 10). However, there is also
evidence for a simpler form of random, undirected exploration,
which is sensitive to value but not to its uncertainty (5, 13). Inte-
gration of value and the uncertainty in its estimation is sensible.
Estimation uncertainty serves as a proxy for how informative
a choice is or what the potential for improvement in value is
(14, 15). The distinction from irreducible uncertainty is impor-
tant. Irreducible uncertainty stems from the inherent stochastic
nature of the environment that generates rewards and cannot be
reduced through learning.

Most studies only admit indirect inferences about the pro-
cesses of learning and decision making, exploiting the trajectory
of choices alone. However, when options are presented visually
and are spatially distinct, we have an opportunity to gain a win-

dow into these processes by examining what people choose to
look at—that is, their visual fixations (16–25). In typical tasks,
including the one we employ in our experiment, we can expect
two sorts of revealing fixation behavior—namely, the relative
time spent on each option when deciding (which bears on choice)
and the absolute fixation time when receiving feedback about the
consequences of choices (which bears on learning).

Fixation time might be correlated not only with subjects’ inter-
nal states relevant to learning and choice, but might actually
affect those states directly (18, 21). This also allows factors
other than value and estimation uncertainty, including stimulus
salience, momentary lapses of attention, or unrelated cognitive
processes, to influence fixation (26–28) and exert statistically
untoward effects on behavior.

In the case of choice, a prominent view is that the pro-
cess leading up to a decision involves accumulating information
about the options until one is judged to be sufficiently good
or sufficiently better than the alternatives (29, 30). Under this
framework, looking at an option facilitates accumulating infor-
mation specifically about that option (18, 21). This would provide
a mechanism through which relative fixation time before mak-
ing a choice can have a direct influence on the decision itself.
In this case, for choices to be approximately optimal (7, 8,
10, 11), the relative fixation time before a choice would have
to reflect the learning history, with respect to both the value
and estimation uncertainty. Our focus on directed exploration
and estimation uncertainty distinguishes the present study from
previous ones on reinforcement learning and attention, which
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focused on effects of value (22) and irreducible uncertainty (24),
or did not in any case involve exploration (25).

In the case of learning, absolute fixation time might have a
direct influence on the magnitude of belief change in response
to a prediction error, which amounts to the learning rate. For
instance, visual fixations facilitate working-memory and memory-
retrieval operations (31–35). Based on this evidence, fixation
time might influence how well a newly observed outcome is inte-
grated with an old value retrieved from memory. Thus, to follow
the precepts of Bayesian statistical learning, fixation should be
related to an option’s estimation uncertainty (3), allowing the
latter to be observable from the former. While this prediction
was made almost two decades ago, empirical evidence has been
lacking (16).

To examine the role of estimation uncertainty and complex
interactions between visual fixation, learning, and choice, we
administered a multiarmed bandit (MAB) task in which we also
tracked subjects’ gaze as they chose repeatedly between six, ini-
tially unknown, options. We varied the mean and variance of
options’ outcomes to motivate exploration and to ensure ample
variability in value and estimation uncertainty. When ignoring
fixation behavior, we found that both value and estimation uncer-
tainty play a role in learning and choice. As predicted, we found
that, over the course of decision making, estimation uncertainty
and value jointly influenced relative fixation times. During feed-
back, when subjects could update their beliefs, uncertainty, in the
form of the unsigned reward-prediction error, guided the total
fixation time on the chosen option. Even though relative fixation
time during choice carried information about value and estima-
tion uncertainty, fixation exerted a much stronger independent
influence on choices than was warranted by that information.
This indicates that an important fixation-specific component
influenced choice. Finally, we show that a model including value,
estimation uncertainty, and relative fixation time before choice
best explained actual choices. This suggests that the influence of
the first two of these quantities is not completely mediated by
their effect on the third and that capturing an internal valuation
process is therefore still important.

Results
Participants completed two games. In each game, they repeat-
edly chose between six options, for a total of 60 trials (Fig. 1A,
Materials and Methods, and SI Appendix, SI Methods). Each
game was an MAB task in which rewards for each option were
drawn from different Gaussian distributions (Fig. 1C). Par-
ticipants were instructed to maximize the cumulative sum of
rewards in each game. To attain this goal, they needed to explore
the options in the choice set in order to learn which option
had the highest average reward and subsequently exploit this
knowledge.

To facilitate detecting whether estimation uncertainty guided
participants’ exploration, the variances of the reward distribu-
tions differed between each of the options. The rationale behind
this manipulation was that choices that are guided by value
alone would be less directly affected by such differences in vari-
ances. In a decreasing variances game, variance decreased as
the mean reward of the option decreased, so that, for instance,
the option with the highest mean had the highest variance
(Fig. 1 C, Left). In a V-shaped variances game, the variance
was largest for the options with the highest and smallest means
and smaller for the middle options (Fig. 1 C, Right). Differ-
ent games allow for better generalization of results and can
serve as a further check for directed exploration, as, again,
choices guided by value alone would be less sensitive to such
differences.

Options’ expected rewards were constant throughout the ban-
dit task. In such a task, any reasonable reinforcement learn-
ing agent that maximizes cumulative rewards would gradually
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Fig. 1. Illustration of the six-armed bandit task. (A) Participants chose
between six options on each of 60 trials. Each option was represented by
a letter from the Glagoljica alphabet. Options were displayed in a circle
around the center of the screen, always at the same location. (B) Time course
of a single trial. Each box denotes a stage in a trial, with duration displayed
above the boxes. For visual-fixation analyses, the main stages of interest
were choice stage, where participants considered which option to choose,
and outcome stage, where they observed a choice outcome (B, Inset displays
reward outcome overlaid over the option). Two stages were gaze contin-
gent (GC), where participants triggered an onset by fixating on a fixation
cross. ITI, intertrial interval. (C) To facilitate detecting whether estimation
uncertainty guided participants’ exploration, the variances of the reward
distributions differed between each of the options. In the decreasing vari-
ances game, distributions get narrower (more certain and easier to learn)
going from the best (rank 1) to the worst (rank 6) option, while for the V-
shaped variances game, they are the narrowest for the middle ranking and
broader (more uncertain and taking more trials to learn) for the better and
worse ranking options, respectively.

allocate more and more choices to high-value options as its
estimates of options’ rewards improve with experience. Indeed,
choices improved from the first to the last block of 15 trials
(Fig. 2A), as indicated by a clear negative block effect (mixed-
effects regression estimates: intercept = 2.50, 95% credible
interval [CI] [2.25, 2.75]; block = −0.29, 95% CI [−0.37,−0.21];
game = 0.06, 95% CI [−0.04, 0.16]; block×game = 0, 95% CI
[−0.07, 0.08]; Mixed-Effect Regressions). There was no strong
difference in choice performance between the games, indicat-
ing that low-ranking options did not attract more choices in
the V-shaped game. While this could be due to choices not
being guided by estimation uncertainty, an alternative expla-
nation is that participants learned to ignore the low-ranking
options very quickly. This would result in weak difference
between the games, since it was mainly these that distinguished
the distributions between games. In most cases, choice per-
formance did not reach ceiling by the last block of 15 trials
(mean of 2.08, SE=0.10), suggesting that the games were
not trivial, and participants were still exploring by the end of
the task.

In the following section, we outline a computational model
built to determine the extent to which estimation uncertainty
influenced choice. We then use this model to examine the mul-
tiway relationships between the visual fixation during the period
preceding each choice, the values and uncertainties of all of the
options estimated by the model, and the actual decision made by
participants. We repeat this analysis for the relationships among
fixation statistics at the time of reward feedback, the predic-
tion error and estimation uncertainty that the model estimated
participants entertain about the chosen option, and the ensuing
learning.

3292 | www.pnas.org/cgi/doi/10.1073/pnas.1911348117 Stojić et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
30

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911348117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1911348117


www.manaraa.com

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

Block 1 Block 2 Block 3 Block 4

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Rank of the option

P
ro

po
rti

on

Choice
Relative fixation

0 0 0 1-3100

-3050

-3000

-2950

-2900

KF-SM
KFL-SM

KF-UCB

KFL-UCB

M
od

el
 e

vi
de

nc
e

0.2

0.3

0.4

0.5

5 15 30 45 60

Trial

C
ho

ic
e 

pr
ob

ab
ili

ty

0

0
1
2
3
4

0 0.4 0.8 1.2 1.6 2

Parameter value

D
en

si
ty

KFL-UCB

A

B C D

Fig. 2. (A) Proportion of choices allocated to
options with higher expected values (i.e., rank closer
to 1) increased from the first to the fourth block.
Relative fixation in the choice stage shows similar
learning effect. Error bars are SEM. (B) Model evi-
dence (bars) and model comparison (numbers below
bars) show that KFL-UCB captures choices best. Error
bars are interquartile ranges of bridge-sampling
repetitions (for some models too small to be visi-
ble; SI Appendix, SI Methods). (C) Mean probability
with which models predict participants’ choices are
above chance level (dashed black line) and above a
nonlearning model with fixed choice probabilities
(dotted black line). The probability is highest for
the KFL-UCB model (blue line). Means are computed
over a rolling window of five trials. (D) Posterior of
the group-level parameter for the KFL-UCB model
that acts as a weight on uncertainty in the UCB
choice rule (β). The posterior mean (vertical line) and
95% CI (black bar on the x axis) show the magnitude
of uncertainty influence. Dots are posterior means of
individual game-level parameters.

Estimation Uncertainty and Choice. To identify learning and choice
processes underlying participants’ behavior, we fitted compu-
tational models to their decisions. These models consisted of
a learning component, in which participants learn or estimate
properties of each option, and a choice component, where they
rely on these estimates to decide between the options.

Along with four control models often used to capture learn-
ing and choice in these types of tasks (SI Appendix, Modeling
Learning and Choices—Control Models), we considered two more
sophisticated learning models, each coupled with two forms of
choice. The learning models were either a Kalman filter (KF) (8,
13, 36) or a “lazy” KF (KFL), both of which use a variant of the
delta rule to update estimated values from a reward-prediction
error (Materials and Methods and Eqs. 1 and 2). The KF is a
Bayesian model that tracks the expected values of options, as
well as the uncertainties in those expectations (i.e., estimation
uncertainty). Moreover, it dynamically adjusts the learning rate
according to its current estimation uncertainty and the relative
noise in the observed rewards. At each point in time, the KF
provides an estimate of the value of an option as a normal dis-
tribution, whose mean reflects the expected value, and whose
variance reflects estimation uncertainty (in the remainder of the
text, we will use the term “uncertainty” to refer to estimation
uncertainty). These means and variances are the key quantities
we subsequently used to examine the role of value and uncer-
tainty in visual fixations. The KFL is similar to the regular KF,
but with one crucial difference: It uses a learning rate which is a
fraction of that of the regular KF (hence its moniker). Both mod-
els take into account differences in variances of options’ rewards
in each game (i.e., irreducible uncertainty), leading to different
learning rates for each option.

The choice component in the models consisted of either a soft-
max (SM; Eq. 3; ref. 37) or an upper confidence bound (UCB;
Eq. 4; ref. 14) rule. The SM choice rule only uses estimated value
to determine choice. As such, exploration is not guided by uncer-
tainty. By contrast, the UCB choice rule implements a form of
directed exploration. It uses the uncertainty to approximate the
information gained by choosing an option and adds this as an
“uncertainty bonus” to the estimated value (38), implying that
exploration is driven by a form of expected information gain.

We used a Bayesian hierarchical approach to estimate the
parameters of the models. This assumes the parameters at the
individual participant level are drawn from common group-level
distributions (39). Model evidence shows that models with the
UCB choice rule fit the data better than models using the SM
choice rule that ignores uncertainty (Fig. 2B). The KFL model

with a UCB choice rule described participants’ choices best
(KFL-UCB), with a posterior probability of ∼0.99. Lazy ver-
sions of KF learning also outperformed the standard ones for
the SM choice rule. The KF models with the UCB choice rule
convincingly outperformed all four control models (SI Appendix,
SI Results). The probability of accurately predicting participants’
choices with the KFL-UCB model increased steadily over the
course of a game, reaching a mean of 0.46 (SE=0.08) by trial 60
(Fig. 2C), well above the chance level (1/6=0.17) and above a
simple nonlearning model in which we estimate fixed probabili-
ties of choosing each option (mean choice probability of 0.21).
The overwhelming evidence in favor of the UCB choice rule
shows that estimation uncertainty plays a clear role in choice.
This shows that our model-based analysis is more sensitive than
the model-free analysis predicated on the different variance pat-
terns. The lack of a between-game effect in performance was
likely due to participants quickly learning to ignore the low-value
options.

Since the only difference between the best-fitting KFL-UCB
model and its SM counterpart (KFL-SM) is the β parameter
that acts as a weight on uncertainty in the UCB choice rule, the
strong evidence favoring the KFL-UCB model over the KFL-
SM model indicates that the β parameter is reliably positive.
Indeed, the posterior distribution of the β parameter of the KFL-
UCB model has a mean of 0.37, and the 95% CI is [0.16, 0.61]
(Eq. 4; Fig. 2D). This “inflation of value” is a sizable uncer-
tainty bonus, given that the expected values of options ranged
between 2.5 and 6 and their variances between 0.75 and 2.75. As
a final check, we also fitted a variant of the KFL-UCB model
where the β parameter was not constrained to be nonnegative.
The KFL-UCB model with the nonnegative β parameter out-
performed the unconstrained KFL-UCB model with a posterior
probability of ∼0.99 (SI Appendix, KFL-UCB Model with Uncon-
strained β Parameter). This result further affirmed that the β
parameter is positive and that uncertainty guides choice together
with value.

We can also examine the usefulness of the “laziness” param-
eter (η) that biases the learning rate in the KFL-UCB model.
A value of η=1 would make the KFL equivalent to the regular
KF. The bias seems to be rather small, as evidenced by the group-
level posterior mean (0.93, 95% CI [0.80, 0.99]; Eq. 1). However,
the individual variability is substantial: For a sizable number of
games (and individuals), parameter values were much lower and
closer to 0 (SI Appendix, Fig. S5C). This suggests that the lazi-
ness parameter captures significant variation in behavior. Values
of the remaining parameters are depicted in SI Appendix, Fig. S5.
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Interactions Between Choice and Fixation Process. We next sought
to assess three-way interactions between fixation during the
choice epoch, the choice itself, and the combination of value and
uncertainty. We first report basic properties of fixation during the
choice epoch. We then look at how value and uncertainty influ-
ence fixation. Finally, we ask whether and how fixation influences
choice.
Properties of the Fixation Process in the Choice Stage. To ana-
lyze interactions between choice and fixation, we focused on the
choice stage of a trial (Fig. 1B). Here, participants had 5 s to
consider which option to choose, before continuing to the next
stage, where they had to execute their choice quickly. The fixa-
tion measure of interest in this section is the proportion of time
spent fixating on each of the options. We computed the sum of
the fixation durations received by each option and divided this
quantity by the sum total of fixation durations over all options.
We refer to this measure of visual fixation as relative fixation.

Relative fixation resembled the allocation of choice, with
increased allocation to high-ranking options as learning pro-
gressed (Fig. 2A). This close correspondence to the choice distri-
bution, including the gradual shift of fixation distribution toward
high-value options over time, was a first indication that relative
fixation might be affected by the same learning process that is
guiding choices, as we originally hypothesized. Importantly, rel-
ative fixation followed the expected value of each option (i.e.,
option rank) to a lesser extent than choice proportions (Fig. 2A).
This could be due to a greater role of uncertainty in the trial-by-
trial fixation dynamics, but could also be attributable to external,
potentially independent, factors. Also as expected, and consis-
tent with a reduction in uncertainty, the total time spent fixating
on any of the options decreased over the course of learning

(mixed-effects regression estimates: intercept = 3.82, 95% CI
[3.62, 4.02]; block = −0.20, 95% CI [−0.28,−0.13]; game =
−0.05, 95% CI [−0.25, 0.15]; block × game = 0, 95% CI
[−0.07, 0.07]; Fig. 3A). As for choice performance, there was no
clear difference between the games. For analysis of other mea-
sures of the depth and breadth of the visual search process in
the choice stage, see SI Appendix, Additional Properties of V isual
Fixation.
Visual Fixations in the Choice Stage Are Guided by Both Value
and Uncertainty. Given these suggestive results, we considered
the conjoint influence of value and uncertainty on fixation in more
detail. Previous studies that examined the relationship between
choice and fixation (18, 21, 40) could not do this, since they
used one-shot choices which precluded modeling of learning and
thereby examining the role of uncertainty. To examine such influ-
ences, we regressed estimates of value and uncertainty from the
KFL-UCB model-fitting choices best on relative fixation in each
trial (Modeling Relative Fixation in the Choice Stage). Importantly,
it was beliefs about values and uncertainty that were established
at the end of the one trial that were used to explain variation in
relative fixation in the next trial. We assumed that relative fixation
followed a Dirichlet distribution whose shape was influenced by
value, uncertainty, and a game-type indicator as a control variable
and whose scale was set by a separate parameter (Eq. 6 and 7).

As predicted, the results of Bayesian hierarchical estimation
showed a clear positive contribution of both value and uncer-
tainty in explaining variability in relative fixation. The whole
of the measurable posterior distribution of the value param-
eter (Val; Eq. 7) was on the positive side of zero (mean of
0.17, 95% CI [0.12, 0.22]; Fig. 3B), and the same held for the
uncertainty parameter (Unc; Eq. 7; mean of 0.12, 95% CI
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Fig. 3. Interactions between choice and relative fixation in the choice stage. (A) Density of total fixation duration for all games. Options disappeared after
5 s, but participants sometimes kept fixating on the same location before triggering the execution stage. (B and C) Posteriors of the group-level value (Val;
B) and uncertainty parameter (Unc; C) in the full model regressing value and uncertainty on relative fixation. Both parameters are clearly positive, as evident
from the mean (vertical line) and 95% CIs entirely above zero (black bar on the x axis). Dots are posterior means of individual game-level parameters. (D)
Model evidence (bars) and model comparison (numbers above bars) for the full model and simpler models that regressed either value or uncertainty alone.
The full model fits the data best. Error bars are interquartile ranges of bridge-sampling repetitions (too small to be fully visible; SI Appendix, SI Methods). (E)
Choice model modulated by relative (Rel) fixation (KFL-aUCB) outperforms the model that regressed relative fixation directly on choices. This indicates that
modeling learning and the choice process is important, even when relative fixation is taken into account. The KFL-aUCB model also outperforms the model
where learning process is modulated as well (aKFL-aUCB); the KFL-UCB model was included for comparison. (F) The KFL-aUCB model predicts participants’
choices with the highest mean probability. All three are well above the chance level (dashed line) and a nonlearning model that estimates fixed probabilities
of choosing options (dotted line). Means are computed in a rolling window of five trials. (G) The group-level ε parameter in the KFL-aUCB, which determines
a pseudo relative fixation for options that were not fixated, is small and closer to zero, indicating that relative fixation was useful as is. (H) The group-level
β parameter from the UCB choice rule in the KFL-aUCB model shows a decrease in the magnitude of the weight placed on uncertainty after accounting for
relative fixation, but the weight is still substantial.
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[0.06, 0.17]; Fig. 3C). Estimated game-type effects were negli-
gible (mean of −0.002, 95% CI [−9.66, 9.64]; Eq. 7), while the
estimated scale parameter mostly acted to flatten the predicted
relative fixation further (mean κ parameter was 0.60, 95% CI
[0.50, 0.70]; Eq. 6). We verified these results by additionally com-
paring the full model to two simpler models, where we either
regressed uncertainty alone or value alone on relative fixation,
keeping the game-type indicator as a control variable (Fig. 3D).
The results of model comparison show that the model with
both value and uncertainty clearly explained the relative fixation
best (posterior probability of ∼1), with simpler models lagging
far behind. Hence, options with larger value and estimation
uncertainty learned from previous trials attracted more relative
fixation in the current trial. Thus, the same value and estimation
uncertainty quantities that underlie block-wise changes in choice
underlie block-wise changes in fixation allocation.
Visual Fixations in the Choice Stage Influence Choice. Having
established that value and uncertainty affect the fixation pro-
cess in the choice stage, we next examined whether visual fixation
influenced choices. Such an influence has been shown in one-shot
value-based choices (18, 40), but not yet for choices in a learning
setting.

We first examined the effect of visual fixations on choices
by regressing relative fixations in the choice stage directly on
choices, using a simple multinomial logistic regression model
(Modeling Choices with Visual Fixations Alone). The results of
Bayesian hierarchical estimation showed that this simple model
had a posterior probability of ∼1 in comparison to the KFL-
UCB model that fit choices best previously. What was surprising
is the margin by which this simple model outperformed the KFL-
UCB model, as shown clearly when examining the probability of
accurately predicting participants’ choices (Fig. 3F). Here, it is
evident that the ability of the simple regression model to pre-
dict choice is almost twice that of KFL-UCB, reaching a mean of
0.63 (SE=0.08) by trial 60. This result establishes a strong effect
of visual fixation on choice, suggesting the presence of a large
choice-related, but value- and uncertainty-independent, compo-
nent in visual fixations, which was not captured in our KFL-UCB
model.
Values and Uncertainty Are Not Completely Reflected in Visual
Fixations. The excellent fit of choice using purely visual fixa-
tions prompted the question as to whether the effect of value
and uncertainty on choice (KFL-UCB model; Fig. 2B) is medi-
ated by their modest effect on fixation (Fig. 3D), or whether a
part of the valuation process that enters choice is not reflected
in visual fixation. To test this, we incorporated relative fixation
into the best-fitting KFL-UCB model (KFL-aUCB model—
“a” prefix marks “attention-modulated”; Modeling Learning and
Choices Modulated by Visual Fixations) and examined whether
this variant describes choice better than a simple model regress-
ing relative fixation on choice. There are various ways in which
relative fixation might be included; here, we assumed that val-
ues and uncertainty of options were warped in proportion to the
relative fixation that options captured (Eq. 12).

Bayesian hierarchical estimation showed that the KFL-aUCB
model outperformed the simple regression model, describing
participants’ choices best with a posterior probability of ∼0.77
(Fig. 3E; we included the KFL-UCB base model as well for com-
parison). The aKFL-aUCB model, in which learning process was
modulated as well, followed suit with a posterior probability of
∼0.23. Examining the models’ probability of accurately predict-
ing participants’ choices again, we saw a clear improvement over
the simple regression model, with a constant advantage for the
KFL-aUCB model throughout the game, reaching a mean of
0.73 (SE=0.07) by trial 60 (Fig. 3F). This provides evidence
that value and uncertainty are not completely reflected in visual
fixation and that explicitly modeling learning and choice pro-
cesses provides additional predictive power. As a robustness

check, we fitted additional attention-modulated models with an
SM choice rule instead of UCB and a KF lacking the “laziness”
parameter (SI Appendix, Comparison of Learning and Choice
Models Modulated by Visual Fixation and Fig. S6). The results
showed that the UCB component is important, as all models
with it substantially outperformed SM-based models. The lazi-
ness parameter is important as well, but it has comparatively
smaller impact.

We can compare the β parameter governing the strength of
uncertainty guidance in the UCB choice rule between the KFL-
aUCB and -UCB models. The posterior of β in KFL-aUCB was
still clearly positive, but its magnitude was less once relative fix-
ation was taken into account (posterior mean of 0.29, 95% CI
[0.12, 0.49]; Eq. 4; Fig. 3H)—about 80% of the value for β in the
KFL-UCB model without fixation modulation (Fig. 2D). Thus,
some of the effect through which more uncertain options are
more likely to be selected was sublimated when relative fixation
was also taken into account.

In the KFL-aUCB model, the attention distribution over
options was generated by squashing the relative fixation statis-
tics according to a parameter ε (Eq. 11). The inferred value of
this parameter can inform us about the importance of relative
fixation. If ε is near 1, the distribution would be near uniform,
independent of the relative fixation. If ε is near 0, then the distri-
bution is dominated by the allocation of looking time. Consistent
with the other analyses, the posterior distribution of the ε param-
eter was small, with a mean value of 0.18 and 95% CI [0.01, 0.35]
(Fig. 3G).

Interactions Between Learning and Fixation Process. For analyz-
ing interactions between the learning and fixation process, we
focused on the outcome stage of a trial (Fig. 1B), the 3-s period
during which participants could observe the reward outcome of
their choice. The fixation measure of interest in this section was
the total time fixating on the reward feedback in each trial. We
will refer to this measure as absolute fixation. As for choice, we
first examined the statistics of this measure and then considered
successively the effect of value and uncertainty on it and, finally,
its potentially additional effect on learning.
Properties of the Fixation Process in the Outcome Stage. We
first considered trial-by-trial variability in absolute fixation. Mean
absolute fixation decreased over the course of learning, and
there are some, albeit weak, differences between the games
(mixed-effects regression estimates: intercept = 2.36, 95% CI
[2.20, 2.52]; block = −0.10, 95% CI [−0.14,−0.05]; game =
−0.06, 95% CI [−0.22, 0.10]; block × game = 0.06, 95% CI
[0.01, 0.11]). The negative effect of the block is circumstantial
evidence that uncertainty, which also decreased over the course
of learning, is related to absolute fixation (Fig. 4B). There was a
ceiling effect due to the 3-s outcome presentation time, and this
led to a left-skewed distribution of absolute fixation (Fig. 4A),
but a mean of 2.36 s indicated that the effect was not particu-
larly strong. Participants often continued looking at the feedback
location for a few seconds more during the intertrial interval
(Fig. 4A). We assumed that these fixations were also associated
with processing the reward feedback and included last fixations
that ended within 2 s of the intertrial interval. Most importantly
for our subsequent considerations, when we repeated the same
analysis on the SDs of absolute fixation, we observed consid-
erable variability in absolute fixation (mixed-effects regression
estimates: intercept = 0.85, 95% CI [0.74, 0.96]; block = 0.07,
95% CI [0.02, 0.07]; game = 0.03, 95% CI [−0.08, 0.14]; block ×
game = −0.02, 95% CI [−0.06, 0.03]), as evidenced by the inter-
cept estimate. For analysis of other measures of the visual search
process, see SI Appendix, Additional Properties of V isual Fixation.
Unsigned Reward-Prediction Error Guides Fixation in the Out-
come Stage. We next examined interactions between learning
and fixation, focusing first on the theory-driven expectation that
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Fig. 4. Interactions between learning and fixation processes at the out-
come stage. (A) Density of absolute fixation in the outcome stage. Even
though the option and feedback disappeared after 3 s, participants often
kept fixating on the same location during the intertrial interval (ITI). Fix-
ations that extended 2 s into the ITI (i.e., 5 s in total) were also used in
the analysis. (B) Like uncertainty and unsigned reward-prediction errors,
absolute fixation decreased over the course of learning. (C) Posterior of
the group-level slope parameter in the model regressing unsigned reward-
prediction error (βuPE) on absolute fixations in the outcome stage. Almost
complete posterior is positive, including the 95% CI (black bar on the x
axis), indicating a clearly positive relationship. (D) The group-level slope
parameter (η1) that biases the learning rate in the aKFL-UCB model has
a positive mean, suggesting a reduced bias for longer fixation on the
feedback; however, the CI includes zero.

time spent looking at the reward feedback is guided by uncer-
tainty, as is the case for the learning rate (3). There are two
measures of uncertainty of interest here. One is the estimation
uncertainty derived from the KF learning model (S variable,
Eq. 2), the same quantity used in the UCB choice rule. The
other is based on the prediction error and reflects both esti-
mation and irreducible uncertainty (41). As predictions improve
and estimation uncertainty decreases, unsigned (i.e., absolute)
prediction error should generally decrease as well. However,
because unsigned prediction error (uPE) contains irreducible
uncertainty (i.e., the variance of options’ reward distributions), it
will have continuing fluctuations as well, giving it a momentary
character. Prediction errors play no role in uncertainty com-
putations in the KF (Eq. 2), so these two measures should be
largely decoupled. Indeed, the correlation between the two mea-
sures is negligible, with an average correlation across participants
of 0.02 (SE=0.11).

We regressed trial-by-trial uncertainty, prediction error, uPE,
and value obtained from the KFL-UCB model on absolute fixa-
tion (Modeling Absolute Fixation in the Outcome Stage and Eqs. 8
and 9). We assumed that absolute fixation follows a skew normal
distribution constrained to the (0, 5) interval (Fig. 4A), and we
included a game-type indicator as a control variable (Eq. 9). We
compared the full model with all four predictors to simpler mod-
els that excluded particular predictors (Materials and Methods).
The results of these model comparisons (SI Appendix, Fig. S7),
which naturally take into account model complexity, show that
a model including only uPE explained absolute fixation best
(P =0.58), with a model including uPE and value (uPE, Unc
model) following suit (P =0.28). In the uPE model, the effect

of a uPE was clearly positive (Fig. 4C), with almost the entire
posterior distribution on the positive side (mean of 0.05; 95%
CI [0.02, 0.07]). This means that reward outcomes accompanied
with large uPE tended to attract longer absolute fixation.

These results suggest that uPE could, in principle, be a more
important form of uncertainty than estimation uncertainty for
guiding choice. On this basis, we reexamined whether a class
of models that uses uPE, instead of estimation uncertainty, in
the UCB choice rule might explain choices better than the
KFL-UCB model. We implemented two models. The KFL-UPE
model used a simple delta rule to learn slow-moving estimates
of uPEs coming from the KFL learning model. These estimates
were then used in the UCB rule. The K2-UPE model used
instead the K2 learning model, which computes estimates of
uPEs in a more principled manner, following ref. 41. However,
the KFL-UCB model outperformed both models with a poste-
rior probability of ∼1 (SI Appendix, Choice Models with Unsigned
Prediction Errors and Fig. S4). Evidently, estimation uncertainty
is more relevant for guiding choice than uPEs.
Fixation in the Outcome Stage Influences the Learning Rate.
Given our finding that learning influences visual fixations in the
outcome stage, we next considered whether there was a relation
in the other direction, i.e., whether fixations affected the course
of learning. As for choice, we tested this by comparing the KFL-
UCB model that fitted choices best to a similar model in which
we allowed absolute fixation at the outcome stage to modulate
the learning rate, now referred to as aKFL-UCB (Materials and
Methods and Eqs. 2, 4, and 13). We decomposed the laziness
parameter η of the KFL into an intercept η0 and a slope η1 that
multiplied the absolute fixation in the outcome stage.

The slope η1 is the main parameter of interest in the aKFL-
UCB model. While the larger portion of its posterior was posi-
tive, with a mean of 0.03, the 95% CI [−0.17, 0.33] included zero,
suggesting that the overall effect was weak (Eq. 13; Fig. 4E).
To further assess its significance, we compared the aKFL-
UCB model to the KFL-UCB model, where learning is not
modulated by absolute fixation. The KFL-UCB model outper-
formed the aKFL-UCB model, with a posterior probability of
∼0.98, suggesting that absolute fixation does not modulate the
learning rate.

Discussion
This study enriches our understanding of human reinforcement
learning behavior by looking at the four-way interaction between
uncertainty, choice, learning, and visual fixation. Our results
offer evidence that people learn and choose in partial accor-
dance with normative models, leveraging estimation uncertainty
for both choice and learning. We show influences of fixation in
reinforcement learning. Signatures of directed exploration can
be seen in relative fixation at choice, which goes beyond previous
findings on the effects of value and irreducible uncertainty on
fixation at choice. Lastly, we provide evidence for the theoretical
prediction that fixation at outcome is modulated by estimation
uncertainty.

Examining choices alone supports a model where exploration
is guided by both value and estimation uncertainty. The win-
ning KFL-UCB model adds an “exploration bonus” to options’
expected rewards (14, 38). This model can be viewed as an
approximation to the optimal solution for MAB problems (7,
42) and adds to a growing body of evidence that people use
uncertainty-guided choice strategies (8–12). The KFL-UCB also
includes a Bayesian learning component (KF) which adapts its
learning rate according to uncertainty. This dovetails with previ-
ous studies demonstrating a dynamic modulation of learning rate
by uncertainty (4, 6). Our results imply that people track uncer-
tainty about estimated value and incorporate it in their choices.
This aligns with evidence from perceptual decision making that
people have well-calibrated confidence in their choices (43) and
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from bandit tasks that they have accurate sense of confidence
in their value estimates (10, 44). Indeed, neuroimaging studies
show that the brain tracks both mean and variance (45, 46), while
studies of neuronal population activity support a coding scheme
where both mean and variance are represented (47, 48).

Our analyses of visual fixation during choice provide evidence
on the role of estimation uncertainty in choice. During the choice
stage, where participants considered which option to choose,
we found that both value and estimation uncertainty, derived
from estimation based on all previous trials, guided visual fix-
ation in the current trial. Hence, directed exploration principles
guide both choice and fixation. Examining choices alone does not
always reveal the role of estimation uncertainty in exploration (5,
13), but including fixation may provide a more reliable method
to decode its role. Previous studies (18, 21, 40) mostly focused
on one-shot choices and, hence, could not examine whether
and how visual fixation during choice is influenced by learn-
ing history, neither value nor estimation uncertainty. There are
several exceptions. Perhaps the closest to the present study is
recent work by Leong et al. (22), who show that fixation during
choice is influenced by value learned from previous trials. How-
ever, the authors did not consider models that track uncertainty
about value. Another recent study by Walker et al. (24) showed
that irreducible uncertainty increases exploration in both choice
and attention, i.e., less focus on best options. However, their
study used a between-subjects design and cannot explain what
components of learning drive fixation on a trial-by-trial basis.
Consequently, their results are inconclusive about the role of
estimation uncertainty. Several other studies that examined the
relation between choice and attention in reinforcement learning
eliminated the exploration aspect of the task and, hence, did not
examine the role of estimation uncertainty (25, 49).

We found that uPEs guide visual fixation on the reward
feedback during learning. Because estimation uncertainty mod-
ulates the learning rate, we expected that it would guide fixa-
tion (3). Our additional prediction was that reward-prediction
errors might also influence fixation, as these indirectly incor-
porate both estimation and irreducible uncertainty. As learning
progresses, estimated value becomes more accurate, and pre-
diction errors correspondingly decrease, thus mimicking the
decrease in estimation uncertainty over time. Because prediction
errors are influenced by irreducible uncertainty, they track both
fast-moving momentary uncertainty and slow-moving estimation
uncertainty. Looking at relative fixations to aversive stimuli in a
conditioning task, ref. 16 also found evidence for the influence
of momentary uncertainty during the outcome stage. Results of
both studies jointly provide supportive evidence for a prediction
based on ref. 3 that fixation should be related to option uncer-
tainty, following the precepts of Bayesian statistical learning.
Interestingly, we did not find that performance of a model where
we allowed absolute fixation at the outcome stage to modulate
the learning process (aKFL-UCB) improved over a model with-
out fixation modulation (KFL-UCB). This result suggests that
fixation reflects the update process rather than having an influ-
ence on it. By contrast, refs. 16 and 22 found evidence for such
modulation. In ref. 16, learning process was directly observed,
and in ref. 22, fixation measure was more detailed, tracking var-
ious features of options. These differences likely resulted in a
greater sensitivity for detecting the fixation modulation in these
studies.

Relative fixation in the choice stage exerted a stronger influ-
ence on choice than warranted by the information about value
and estimation uncertainty contained in it. In fact, choices
were better predicted from relative fixation alone than by the
KFL-UCB model. This suggests that fixation carries additional
choice-relevant factors which are potentially unrelated to value
and estimation uncertainty. For example, low-level features of
the symbols denoting individual options may have attracted

gaze and biased choice toward those options (28). Such effects
are anticipated by an attention-modulated sequential sampling
model (18). Here, we identify the magnitude of this modula-
tion in a learning setting: Our ability to predict choice nearly
doubled, even for early trials that are usually difficult to pre-
dict by reinforcement learning models (Fig. 3F). This indicates
that much can be gained by taking into account the visual
search process in modeling learning and choices. The KFL-
aUCB model, an example of how fixations can be incorporated
into reinforcement learning models, explained choice better than
relative fixation alone. This suggests that value and estimation
uncertainty influenced choices both directly, through an internal
valuation process, and indirectly, via fixation. This result invites
an interesting conjecture about directed and random exploration
(9). The source of directed exploration might be an internal
choice process, while that of random exploration might lie in
fixation-specific factors unrelated to decision variables.

In tasks where people learn about options’ values from reward
feedback, looking at the options in the choice stage does not con-
vey new information per se. In learning tasks, quantities such
as estimated value and associated uncertainty must be repre-
sented in memory rather than externally. This raises the question
of why participants’ fixations in the choice stage were infor-
mative of their choices. To make an informed choice between
the options, participants will likely retrieve experienced rewards
or other indicators of options’ value from memory. Looking at
the stimuli, even though not informative per se, can facilitate
memory-retrieval and working-memory operations (31, 32, 50,
51). This is akin to the rationale behind sequential sampling
mechanisms in one-shot value-based decision making. Ref. 18
hypothesized that the brain accumulates evidence by extracting
the features of choice options, retrieving their learned values
from the memory, and integrating these for each option. Simi-
lar assumptions underlie integrated reinforcement learning and
sequential sampling models (20, 52–54). A negative side effect
is that fixations can introduce bias, as suggested by ref. 18. Our
findings provide insight into the nature of this bias. Being shaped
by the learning history, the bias is partly adaptive, as a subset of
fixations reflect cognitive processes behind directed exploration.

The attentional drift diffusion model by Krajbich et al. (18)
is an appealing account of the within-trial choice process and
how this may be influenced by fixation. Recent models combin-
ing reinforcement learning and sequential sampling have added
across-trial learning dynamics (52–54). These models are not
applicable in our task, as the choice stage was fixed to 5 s and
separated from the execution (Fig. 1B). Therefore, response
times are not informative about the evidence-accumulation pro-
cess. When we allowed for self-selected choice times in pilot
experiments, we discovered that participants plan their next
choice immediately after the feedback and during the intertrial
interval, making the collection of useful eye-movement data dif-
ficult. While such separation seems artificial in a laboratory task,
it arguably brings the task closer to real-world situations. For
instance, purchasing a certain type of product in a supermarket
might happen every few days, effectively separating the choice
opportunities and forcing the consumer to make a final choice
once they are in front of the shelf. Applying sequential sampling
models would require experimental designs that solve the issue
of deciding in nonchoice time in a different way. One potential
solution would be to use several bandit problems simultaneously
and on each trial randomly assign one of these, thereby reduc-
ing the usefulness of planning a choice before choice options are
presented. Another is to use a contextual bandit problem, where
new options can be presented on every trial, while learning would
allow making useful predictions about the value of these new
options (10, 22, 55).

One pertinent question is how our results regarding visual fix-
ations relate to the role of attention in reinforcement learning.
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In theoretical work on associative learning in nonhuman animals,
the Mackintosh model (56) predicts that stimuli with high predic-
tive value should attract attention, while the Pearce–Hall model
(2) predicts that uncertainty has a primary role. These seemingly
contradictory accounts of attention have both received empirical
support (57). Ref. 3 reconciled the two accounts, proposing that
both are correct, but at different stages: During choice, attention
is guided by predictive value, while during learning, it is guided
by uncertainty. Our results are consistent with this latter account.
Fixations during the outcome stage were mainly driven by uPEs,
the measure of surprise in the Pearce–Hall model (2). Our results
for relative fixations in the choice stage support an extension of
the ref. 56 account based on approximately optimal solutions to
the exploration–exploitation trade-off (14, 38). In this extension,
both value and estimation uncertainty play a role in the choice
stage.

Although imperfect, eye movements provide trial-by-trial
empirical measures of attention. By recording fixations, attention
need not be inferred solely from a computational model (58–60).
But there is scope for further integrating measured attention into
our models. Rather than using fixations as exogenous modula-
tors of learning and choice, as we have done here (see also ref.
22), a more satisfying treatment would endogenize fixations in
a model that learns to direct attention and choose both within
and across trials. Research in vision science has suggested that,
in tasks such as scene viewing (61) and visual search (62), eye
movements are guided by visual information gain. Sprague and
Ballard (63) proposed a reinforcement learning model of eye
movements where uncertainty guides eye movements. In their
model, eye movements to visually uncertain stimuli are rein-
forced because learning about the identity or state of the stimuli
results in decisions that maximize the amount of reward. Pre-
vious studies have provided qualitative support for the model,
albeit not in a reinforcement learning context (64). Manohar and
Husain (65) modeled fixations in one-shot choices between mon-
etary gambles, where the authors argued that visual attention
aims to minimize uncertainty about the expected value of gam-
bles. In the latter study, as well as those concerning visual scene
detection, fixation directly provides novel information. This con-
trasts with our study, where fixating on an option can benefit
memory retrieval, which, in turn, may serve a similar aim of
information gain. This then paves the way to extending previous
efforts to endogenize fixations to the current setting, a focus of
future research that we plan.

In summary, we provide a detailed window on the interplay
between learning, choice, and visual fixation that allows us to
trace the path through which uncertainty affects behavior. Our
study has theoretical and practical implications. First, it shows
that attention and reinforcement learning processes might be
more intertwined than previously thought, prompting a need
for closer integration of the two in the future studies. It also
raises questions, such as whether the source of random explo-
ration can be traced to the learning-independent properties of
the fixation process. Second, it illustrates the utility of moni-
toring eye movements during learning and choice. The ability
of reinforcement learning models to predict individual choice
substantially improves when fixations are taken into account.
Third, since fixations are shaped by learned values and associated
uncertainties, the potential for fixation to bias choice is smaller.
Finally, the same result could explain everyday phenomena, such
as what shelf space in supermarkets people pay attention to and
how companies can leverage this to induce exploration of new
products.

Materials and Methods
Participants. We recruited 34 participants (18 female, Mage = 26.8 and
SDage = 8.1) from the Aarhus University subject pool. After applying a pri-
ori exclusion criteria separately to each game played by each participant,

23 participants remained (12 female, Mage = 26.9 and SDage = 8.4) and 36
games in total, with 19 decreasing variances and 17 V-shaped variances
games (see SI Appendix, SI Methods for details). The experimental ses-
sions were conducted individually in the Cognition and Behavior Lab at
Aarhus University and lasted for 75 min on average. Participants had nor-
mal or corrected-to-normal vision. The study was approved by the Aarhus
University Research Ethics Committee, and all participants provided writ-
ten informed consent. Participants received a show-up fee of 100 Danish
krone and an additional performance-contingent bonus (100 Danish krone
on average).

Task. The experiment comprised two separate MAB tasks (games) with 60
trials each. In each task, participants made repeated choices between the
same six options, represented by different symbols (Fig. 1A) and shown
in the same location on each trial. Key stages of a trial were the choice
stage and outcome stage. In the choice stage, options were presented for a
fixed duration of 5 s, during which participants considered which option
to choose. They registered their choice in the execution stage that fol-
lowed the choice stage. In the outcome stage, participants were shown
reward feedback overlaid over the chosen option for 3 s. Participants
were instructed to maximize the cumulative sum of the rewards during
each task.

The main difference between the games was in the variance of the
rewards. In the decreasing variances game, the variance of each option
decreased from the best option to the worst (according to expected reward).
In the V-shaped variances game, the variance decreased from the best
option to the third best and then increased again from the fourth best
to the worst option. To minimize carryover effects between the games,
we used a different set of letters from the Glagoljica alphabet (Fig. 1A)
and rescaled rewards differently for each game. The alphabet letters, the
options’ locations, the order of the games, and the currencies and scaling
factors associated with each game were randomized. At the end of each
game, participants received feedback about the experimental points they
accumulated and corresponding earnings. After participants finished both
games, we informed them which game was randomly selected for the pay-
out, debriefed them, and paid their earnings. A detailed description of the
time course of each trial, stimuli construction in each game, and procedure
is provided in SI Appendix, SI Methods.

Eye Tracking. Participants sat in front of a screen with resolution of 1,650×
1,050 pixels and physical size of 475× 297 mm (widths and heights, respec-
tively). They used a chinrest at ∼60-cm distance from the screen. We
recorded eye movements and pupillary responses using a desk-mounted
EyeLink 1000 eye tracker (SR Research) with a monocular sampling rate
of 500 Hz. We performed a 13-point calibration with the dominant eye,
followed by a 13-point drift validation test. We accepted calibrations with
offset less than 1◦ of visual angle. In gaze-contingent stages of the trial—
triggering the onset of the choice and execution stage—90% of gaze
locations within a 1-s window needed to be in a circular area with a
3-cm radius around the fixation cross. To make a response in the execution
stage, participants had to press a key, and an eye data sample had to be
recorded at the same time within a circle representing an option. We used
the default algorithm provided by SR Research to detect fixations. In data
analysis, we drew an area of interest (AOI) with radius of 3 cm around the
center of every option and assigned all fixations falling into these AOIs to
the corresponding options. See SI Appendix, SI Methods for further details
on the eye-tracking setup.

Data Analysis. We present here an abbreviated overview of analyses
and models. More detailed descriptions, together with model-fitting and
comparison procedures, are given in SI Appendix, SI Methods.
Mixed-Effect Regressions. We examined learning effects in games and dif-
ferences between game types using Bayesian mixed-effect regressions. We
computed averages across blocks and regressed an intercept, a block indica-
tor (coded as [−1.5,−0.5, 0.5, 1.5] for blocks one to four) and a game-type
indicator (coded as−1 for decreasing variances and 1 for V-shaped variances
game), as well as their interaction on choice performance (chosen option
rank) and fixation measures in the choice and outcome stages (total fixa-
tion duration, number fixations, and number of options fixated). Intercept
and blocks were entered as game-specific random effects, while game type
was entered as a fixed effect. CIs were computed as highest posterior density
intervals.
Modeling Learning and Choices. We fitted four main computational models
to participants’ choices. Each model consisted of a learning and a choice
component. The learning component was either a KF (8, 13, 36) or a KFL
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model. For the choice component, the models used either an SM (37) or a
UCB choice rule (14).

The KF model assumed that participants updated their estimates Ej(t + 1)
of the expected reward of choosing option j on trial t + 1 from the observed
reward Rj(t) on trial t as

Ej(t + 1) = Ej(t) + Ij(t)Kj(t)[Rj(t)− Ej(t)], [1]

where the so-called “Kalman gain” term Kj(t) acts as a learning rate. Term
Ij(t) is a simple indicator variable, with a value of 1 if option j is chosen on
trial t and 0 otherwise. The Kalman gain was updated on every trial and
depended on the current level of uncertainty

Kj(t) = η
Sj(t) +σ2

ζ

Sj(t) +σ2
ζ +σ2

ε,j

, [2]

where Sj(t) is the variance of the posterior distribution of the mean reward,
updated in every trial as Sj(t + 1) = [1− Ij(t)Kj(t)][Sj(t) +σ2

ζ ]; σ2
ζ is the inno-

vation variance and σ2
ε,j the reward variance parameter which modulate

the learning rate. Parameter η ∈ (0, 1) determines a bias in the Kalman gain,
allowing the filter to learn at slower pace (hence the term “lazy”). In the
standard KF, we fixed this parameter to η= 1, while in lazy versions, it
was an estimated parameter. In both variants, we initialized the estimate
of the expected value to Ej(0) = 0. Initial variance was a free parameter σ2

i
such that Sj(0) =σ2

i . We took into account differences between variances
of options by setting the σ2

ε,j parameter to option’s objective variance that
we used to draw rewards from: [2.75, 2.35, 1.95, 1.55, 1.15, 0.75] in decreas-
ing variances and [2.75, 2.35, 1.95, 1.95, 2.35, 2.75] in the V-shaped variances
game.

In the SM choice rule, participants chose probabilistically according to
relative estimated value

P(C(t) = j) =
exp[θEj(t)]∑6

k=1 exp[θEk(t)]
, [3]

where P(C(t) = j) is probability of choosing option j at trial t, and the inverse
temperature parameter θ > 0 determines the sensitivity to differences in
estimated values, and with it the amount of exploration.

The UCB choice rule combines estimated value and estimation
uncertainty

P(C(t) = j) =
exp{θ(Ej(t) + β

√
Sj(t))}∑6

k=1 exp{θ(Ek(t) + β
√

Sk(t))}
, [4]

where β > 0 is the weight a participant places on estimation uncertainty.
While the original UCB rule chooses the option with the highest resulting
value deterministically, we implemented a stochastic version by using an SM
transformation.
Modeling Relative Fixation in the Choice Stage. We used trial-by-trial sub-
jective estimates of value and uncertainty from the KFL-UCB model fitting
choices best and regressed them on relative fixations in the choice stage.
We controlled for potential differences between games by including a
game-type indicator. Relative fixations were operationalized as the summed
duration of fixations on each of the options divided by the sum of these
quantities across all options.

We assumed that relative fixations in the choice stage (RF) follow a
Dirichlet distribution

RF(t)∼D(α(t),κ), [5]

with the probability density function defined as

1

B(α(t)κ)

6∏
j=1

RF
αj (t)κ−1

j , [6]

where B(α(t)κ) is a multinomial beta function that acts as a normaliz-
ing constant. The vector of concentration parameters α(t) for each trial is
obtained by passing values (Ej(t)) and estimation uncertainty (Sj(t)) of each
option j obtained from the KFL-UCB model, as well as a game-type indicator
as a control variable (G), through an SM function

α(t) =
exp{βvEj(t) + βu log Sj(t) + βgtG}∑6

k=1 exp{βvEk(t) + βu log Sk(t) + βgtG}
, [7]

where βv and βu are weights on value and uncertainty, while βgt is the
effect of game type. We log-transformed estimation uncertainty to linearize

it. Games were coded as G =−1 for the decreasing variances and G = 1 for
the V-shaped variances game, and this effect was included at a group level
only. We assumed an additional precision parameter κ that multiplies the
concentration parameters, governing how much probability mass is near the
expected value.
Modeling Absolute Fixation in the Outcome Stage. We used trial-by-
trial uncertainty, reward-prediction errors, and value from the KFL-UCB
model that fit the choices the best and regressed them on absolute fixa-
tions in the outcome stage. We controlled for potential differences between
games by including a game-type variable. Absolute fixation measure was
operationalized as a sum of durations of all fixations on the reward feedback.

We assumed that fixation durations during the outcome stage (F) follow
a skew normal distribution

F(t)∼N(ξ(t),ω,α), [8]

truncated to interval F(t)∈ [0, 5]. In the full model, the location parameter
ξ(t) for each trial is a linear combination of intercept, uncertainty (Sj(t)),
prediction error (PE), uPE (uPE), and value (Ej(t)) of chosen option j obtained
from the KFL-UCB model and game-type indicator variable (G)

ξ(t) = βi + βu log Sj(t) + βPEPEj(t) + βuPE|PE|j(t) + βvEj(t) + βgtG, [9]

where βu, βPE, βuPE, and βv are weights on uncertainty, signed prediction
errors, uPEs, and value; βi is the intercept; and βgt is the effect of game
type. We computed uPEs as absolute value of the prediction error, and we
log-transformed estimation uncertainty to linearize it. Games were coded
as G =−1 for decreasing variances and G = 1 for V-shaped variances game,
and this effect was included at a group level only. We assumed an additional
scale parameter ω and shape parameter α, modeled at an individual game
level, without a group-wise parameter.
Modeling Choices with Visual Fixations Alone. We also regressed relative
fixation in the choice stage alone on choices, without explicitly modeling the
learning and choice process. We used a simple multinomial logistic regres-
sion model, where relative fixation for option j in trial t, RFj(t), was passed
through an SM function to obtain the probability P(C(t) = j) of choosing
option j at trial t

P(C(t) = j) =
exp[τRFj(t)]∑6

k=1 exp[τRFk(t)]
, [10]

where the inverse temperature parameter τ > 0 determines the sensitivity
to differences in relative fixations.

To avoid the measure of relative fixation taking the value of zero for
options that were not fixated on at all in certain trials, we assigned each
option a minimum value of ε which was treated as a free parameter:

RFj(t) = ε/6 + (1− ε)
Fj(t)∑6

k=1 Fk(t)
. [11]

Modeling Learning and Choices Modulated by Visual Fixations. We
assumed that visual fixations can modulate the choice or learning compo-
nent of the KFL-UCB model. We marked the learning and choice component
with an “a” prefix to indicate which aspect was modulated by fixations. For
example, in the aKFL-UCB model, visual fixations modulated the learning
process, while in the KFL-aUCB, they modulated the choice process.

We assumed that visual fixations in the choice stage entered the choice
process by reweighting the choice probabilities produced by the models
based on options’ estimated values and estimation uncertainty (Eq. 4).
The relative fixation measure defined in Eq. 11 enters the UCB rule in an
additive way:

P(C(t) = j) =
exp{τRFj(t) + θ(Ej(t) + β

√
Sj(t))}∑6

k=1 exp{τRFk(t) + θ(Ek(t) + β
√

Sk(t))}
. [12]

We assumed that visual fixations in the outcome stage influence the learn-
ing process by making the bias in the Kalman gain update dependent on
how long the reward feedback was fixated on in total in the outcome stage
of the trial. We implemented this by replacing the η parameter in Eq. 2 with
a baseline parameter η0 and a slope parameter η1 that depends on F, the
absolute fixation duration in outcome stage:

η(t) = Φ(η0 + η1F(t)), [13]

where Φ is the standard normal cumulative distribution function, used to
constrain the resulting η parameter to the (0, 1) range.
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Data and Code Availability. The data, code used for our analyses, and other
project-related files are publicly available at the Open Science Framework
website: https://osf.io/539ps/ (66).
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